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Abstract

A

This paper proposes a class of modsls to represent, in the same framework, the long-range de-

pendence and singularity /intermittency of 2-D turbulence.A method is given to estimate and separate these two
effects. Application to a vorticity field indicates that the resulting energy spectrum foilows the power law, in the
low-frequency as well as the high-frequency inertial range, predicted by Kraichnan's theory of 2-D turbulence.

1 Introduction

Kraichnan's theory of two-dimensional turbulence pre-
dicts an inverse energy ( L3-porm of velocity) cascade
which gives rise to the power law E()) ~ {A]7%/°
for the energy spectrum in the low-frequency inertial
range (Kraichnan, 1967}. This theory also predicts a
direct enstrophy {L*-norm of vorticity) cascade which
leads to the power law E(A) ~ [A|™° for the high-
frequency inertial range. It is known that the energy
spectrum F (A) of the velocity field is related to the
enstrophy spectrum Z {A) of the vorticity field via the
formula Z (X = [A* E()\), A € B? (Do-Khac et al.,
1994). Consequently, the above scaling laws can be
written for Z (A) as

M3 A =0
Z /\ ~ i b H
*) { IATH, A = oo,

Self-simnilarity thecries, in particular that of fractional
Brownian motion {{Bm), have been commonly used to
model the |A] ™ scaling of the velocity field. The scal-

ing EA|1” % in the low-frequency range means that the
vorticity field does not dispiay long-range dependence
{LRD]}, and, due to lack of an appropriate method,
its validation does not seem to have received much at-
tention in laboratory as well as numerical experiments
{Farge et al., 1896). Also, to our knowledge, there has
been no previous work reporting on the estimation of
both scaling laws in the same setting.

In this paper, we propose a method to estimate
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both scaling behaviours {at low frequencies as well as
ir the high-frequency range) for the vorticity field. As
a result, we advocate that the scaling |A|”° in the en-
ergy spectrum is the contribution of both singularity
/ intermittency and LRD of the velocity random field.
It is then essential to be able to separate these two
effects. This separation is based on a class of models
which represent simultaneously the LRD and singu-
larity / intermittency of 2-D turbulent flows. In the
simplest setting, the increment random fields of this
class have spectral density of the form

A = “‘“‘E—‘—c———z——a, c>0,0<a<l, (1)
AP (14 137)
—1/2<y<1/2, a+vy>1/2, &R

The imposed conditions on v and o mean that the
spectral density (1} is properly defined and the re-
sulting increment random field is stationary. In other
words, the random fields are not assumed stationary,
bus have stationary increments with spectral density
(1). It is noted that f{}) ~ {A|7>7 as |A| = 0 and
FO) ~ A7) a5 [A] - co. Hence, the LRD is
represented by the exponent -+, while the singularity
/ intermittency is indicated by the exponent o .Frac-
tional Brownian motion is a special case of (1) when
ce = 1. The component [A|"*" is the Fourier transform

of the Riesz kernel, while (1 + ]Aiz) s the Fourler

transform of the Bessel kernel (Ank ef al,, 1997b). The
existence of random fields with spectrum of the form



{1) (the fractional Riesz-Bessel motion) is established
in Anh ef al. (1597a).

This paper gives a discrete approximation to (1)
and a method for parameter estimation of the result-
ing discrete models. Here, we rely on the wavelet the-
ory to be able to separate the LRD effect and the
heavy-tail effect in the data. Numerical results will be
reported for a vorticity field generated from classical
2-D turbulence equations. The results agree with the
scaling behaviours predicted by Kraichnan's theory.

2  Wavelet transform of station-
ary increment random fields

Let {X (#},t € R?} be a continuous (in mean square}
random fleld with mean 0. Denote the increments of
X® by AMX @) =X+ - X (), t,7 € R
The random field X (¢) is said to have second-order
stationary increments if the expectations

D{t;r,m) = B{(A (r) X (£ +5)) (A () X (s)]]

are independent of s for all 5,¢, 7,72 € B®. The func-
tiecn D (¢; 71, m2) then has the spectral representation

s} (t;T'l_,Tg) — f {1 _ 8—1’71-/\) (}. _ ei‘l’:u\)
RZ,

2
! ;;j‘ FldA) + Am -0, (2)

=

where B2 = R* — {0}, F (d}) is a nonnegative mea-
sure on R® such that [, F(d}) < 00, 4 is 2 constant
Hermitian positive definite matrix, and = - 7y s the
scalar product of two vectors 7,72 € R° (Yagiom,
1957).

We shall assume that F is absolutely continuous
and that there exist positive numbers =, @, ¢ such that
its Radon-Nikodym derivative f (\) has the form (1).
We shall consider onty random fields for which 4 =0
in the representation (2). An important example is the
ciass of locally stationary and locally isotropic random
fields with a power law structure function (Yaglom,
1857, pp. 311, 316 & 317), which is known to play an
important role in the statistical theory of turbulerce
(Obukhov, 1954). Fractional Brownian motion and
those characterised by a spectral density of the form
{1) belong te this class.

Since the estimation method of Section 4 relies on
the wavelet theory, we derive here some needed results
on the wavelet transforms of stationary increment ran-
dom fields.
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Let ¢ € Ly {R?) with its Fourier transform ¥ sat-
isfying the admissibility condition:

>

Ae R ae
(3)

;

The function ¢ is then a wavelet function. The con-
tinuous wavelet transform of X (2) is defined as

${0) =0, Cw=/£w E@(ax)fi—“<m,

Wa (2)

a™? X(s)’g{;(fw—t) ds,a > 0,t € R
RZ a

a | Xiau+t)y(u)du
R2

(4)

Now, using the spectral representation (2) with A = 0,
the definition {4) and Fubini's theorem, the covariance
function of W, (t) at 4 fixed scale a is given by

E[W,(t+7)Wo(t)] = aZ/ EB(X (au+it+7)
w2 JR?

X (av + i) (u) v {v) dudy

— a?f / [ (1 - e—i(o,u-é-r}-,\) (1 - eiav-,\)
R*JR? | /R2

14 AP
X®

= o2 ]1;2_ [/R? (1 - e“'(‘““:"'}'k) Y {u) du

_ piau-d L+ }}‘iz
X /l;i (1 e )w(v)dv} m})\lg

X

F{A) df\J ¥ (uv) ¥ (v} dudy

FlA)da

214+ A
A

= g? /R: eTiA 1$(a}\)l FAYdX  using (3),
’ (5)

which is independent of ¢. Consequently, the random
field W, (¢) is stationary with spectral density

214 )

. 6
|A]° ©

2
@

J(an)| FOV.

Jw, (A}

Writing Y5 = 2792 (279t k), § € Z, t,k € R,
then, in view of (5}, the variance of W5, is given by

2 1 4 |A)°

F(X) dA
A W

P (272) (7)

R(:5) =2 |

R?




3 Parameter estimation

In this section, we outline a method to estimate the
spectral density of a discrete-parameter random field
whose covariance function approximates that of the
random field generated by (1) as |A} = O and |} = oo,
We need the following resuits.

Lernma 1 Let flz ) = I (1{{2)
and g(2,Y) = 2520 tobewo § (T + 275,y +27k).
Then g (z,y) € Ls ([~7r,7r]2) and cir = c (4, k), where

clf, k) = fRz flz,y) g“i(jz+ky}dzd’y,

T o
/ f glz,y) e~ iliEtkyl gy
R Ve

Proof. Extension to B? of Lemma 1 of Meyer, 1992,
p.d. B

Cik =

Lemma 2 Fora > 0, there exists o finite measure lq
on B2 so that its Fourier transform [, i given by

R B ]A|2&
Loy ()\) = (} N E)\Iz)h .

Proof. See Stein (1970), p. 133. &
In view of Lemma 2, we can write (1) in the form

F = ;;;—(&‘% ®)

Lemma 1 then implies that a discrete approxima-
tion of the component 1/ A7 of (8) is

>0 o0 1

2 2

ex !
500 k500 (O +2m0) 4 (g + 208)7)
A1, Az € (0, 7]

1

~ W as 1)\‘ —= 0. (9)

The result (9) suggests that the exponent v+ can
be estimated by linear regression on the periodogram
T(A) of X (4):

nI(d A =er={y+a)ln [(2%)2 N (%@)T

k24

+Usx, _’,'k = 1, ,{n/?] — ]., (10)

7 i the sample size and u;4 Is white noise (Geweke and
Porter-Hudak, 1983). On the other hand, the compo-
aent O, (A) of (8) can be estimated by the maximum
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entropy spectral method of Chiang (1984). This lat-
ter method, which is an extension of the Burg maxi-
mum entropy method to two dimensions, can be im-
piemented using the mulitivariate Levinson recursien.

Estimation of model (&) gives the exponent v +
of the combined effects of LRD and singularity / in-
termittency. In order to separate these two effects, we
need to estimate v, the low-frequency exponent, alone.
Since the scaling iAil/ ? in a neighbourhood of the ori-
gin means short-range dependence for the vorticity
field, it is not appropriate to use a (Geweke-Porter-
Hudak type procedure. Our method starts with Eq.
(7). It is plausible to estimate v by a 1-D method;
in other words, the vorticity field {s vectorised for this
estirnation. Eq. {7) then becomes

2 14 A%

RO =2 [N SFfwa. o

where f (A} is also of the form (1). For the wavelet
function 1, we shall use the Haar wavelet:

1, 0<t<1/2

G, elsewhere,
~ X sinA/4Y?
N = —iAf2 .
B0y = B (Z002)
Then, with the scale parameter a = 27,
- ~ 2 (1427 )\2)1_&
LAY — n2i(iAey) (
=710 [ b an,
: . 4 —-2iy2yi—e
where (%) = (13344) (142 - )" Noting that

air;)\_}i_as,\#_;,[]andiii_»\wias/\—}oo,wehave

fphNjidh < xasj—ocandfor l+a+y>0
Hence, as 7 — 0,

R{0;5) ~2HFVAL 0 < M < oo,
which suggests the linear regression:

MR(O ) =y +2(14+v) In 2 +v;,  (12)

v; being white noise.

4 Experimental results

The above method is applied to a decay vorticity fleld
generated from the Navier-Stokes equations (in the



Table 1: Parameter estimates for the vorticity field of
Figure 1

7+a 2%
1.006 (15)  —0.314 (100)
1.090 (20)  —0.292  (200)
1150 (25)  —0.296 (300}

velocity-vorticity form). Farge et al. (1992) observed
that the ponlinear dynamics is preserved if only the
strongest wavelet coefficients are used. This leads to a
numerical scheme tc integrate Navier-Stokes equations
in an adaptive wavelet basis, and a forcing scheme
which injects enstrophy only into the strongest wavelet
coefficients in order to excite the vortices without af-
fecting the background Aow (Schneider and Farge,
1997). A typical 512512 image of the vorticity field
at time step £ = 10 is shown in Figure 1. Its 2-D
periodogram is shown in Figure 2.

We derived the numerical results (reported below)
on: this image. Since the estimation of the exponent v
is a 1-D method, we performed this estimation on the
horizontal lines 100, 200 and 300 of the image. The
line 100 is displayed in Figure 3, while its periodogram
is shown in Figure 4. It is clear that the vorticity field
exhibits short-range dependence {with a positive slope
near frequency ( in the periodogram).

In using the Geweke-Porter-Hudak method for es-
timating v + «, it i1s necessary io compute the re-
gression (10} in a small neighbourhood of the ori-
gin. Geweke and Porter-Hudak (1983) suggested to
use ,k = 1,..., /1 (te. /512 in our case). We report
the estimates of v + « for 15, 20 and 25 Fourier fre-
quencies in Table 1. The estimates of 2 are reported
for the lines 100, 200 and 300 of the image. It should
be noted that the above estimates are obtained for
the spectral density f{X;, Ay} of the vorticity field.
In applied works, such as that of Kraichnan (1967),
the spectral density of a 2-D isotropic random feld is
meant to be the quantity

@ (1D = @' (|AD,

where ® (k) = ff!/\kk FA1, Aa)daydig (Eg. (4.88) of
Yaglom, 1086}. The relationship between ¢ (|A]) and
FOAD is

A€ R,

2T

@A) = T [ALFCAD (13)

(Eq. (4.119) of Yaglom, 1986). Hence, in the form
(13), the scaling behaviours of the vorticity field of
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Pigure 1 is

A 0.314 , 3 = G,
2~ { i D%

{using 7,k = 1,...,15 and lire 100} as predicted by
Kraichnan’s theory.

5  Conclusions

This paper introduces a class of models which are
capable of representing two key features of 2-D fur-
bulence: LRD and singularity/intermittency. Their
spectral form aliows this representation to be exam-
ined simultaneously. The range of the parameters
means that the random feld may display long-range
(0 < v < 1/2) or short-range dependence {—1/2 <
v < 0). For severe singularity or intemittency, the
parameter must be within the range 0 < a < 1/2.
With the Haar wavelet playing a key role, the method
of this paper allows these two effects to be estimated
and separated. Additional features of the data can
also be incorporated in the model { such as short-term
features represented by an A RMA-type component in
one dimension). However, in two dimensions,this in-
corporation may require the introduction of artificial
causal directions in order to define a "past” and a
"future” of a pixel in the image. For the purpose of
studying scaling laws, this spatial 4 RMA-type mod-
elling is not essential.. Chiang’s method of represent-
ing short-term features in a 2-D stationary spectrum is
sufficient for an iterative estimation of the LRD and
singtlarity /intermittency exponents. { It should be
noted that a specification of causal directions in space
is not needed for the spectral approach of this pa-
per). The estimated results indicate that the gener-
ated vorticity field does not display much singularity
(with & =~ 1.183) at time step t=10. Estimates on
images of later time steps show that the resulting vor-
ticity field scales as |A|~2 at t=200 and as [A|™° at
t=300, for example. These estimates indicate a decay
turbulence and that the scaling exponent may vary in
the range 1 < 2(v + o} < 3.
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Figure 2: Periodogram of the vorticity field of Figure
1.
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Figure 3: Line 100 of the vorticity fleld of Figure 1.
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Figure 4: Periodogram of the time series of Figure 3.



